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Abstract: Control of time delay systems has been a challenging problem for the control engineers. The issues have 

been inviting attention of many researchers, especially in the context of robust control. This is further motivated by the 

fact that many processes have the time delay present in the corresponding models and thus the design of controller 

becomes computationally rather involved. Time-delayed systems are pervasive in many engineering systems such as 

tele-robotic systems, vehicle platoons, biological systems, chemical processes etc. The presence of delay in these 

systems makes closed-loop stabilization difficult and degrades tracking performance. The problem becomes extremely 

difficult when uncertainties are present in the model as well as in the delay parameter. It is known that, in general, the 

delays appear in the system models due to various factors like transport phenomena, computational time needed for 

generation of control command, time delay in the smart measurement devices, approximation of a higher order system 

with a lower order model etc. This paper is concerned with the robust control of linear varying time delay system using 

LMI approach. Also this paper develops a control technique for uncertain linear time delay systems in which both plant 

uncertainty and controller uncertainty are taken into account.  

 

Keywords: LMI control, time delay system, robust control, uncertainty, stability. 

 

I.INTRODUCTION 

Time delays are usually unavoidable in many mechanical and electrical systems. The presence of delay typically 

imposes strict limitations on achievable feedback performance in both continuous and discrete systems. As it is seen, 

time delay is very often encountered in various technical systems, such as electric, pneumatic and hydraulic networks, 

chemical processes, long transmission lines, robotics, etc.[1]. The existence of pure time lag, regardless if it is present 

in the control or/and the state, may cause undesirable system transient response, or even instability. Consequently, the 

problem of controllability, observability, robustness, optimization, adaptive control, pole placement and particularly 

stability and robust stabilization for this class of systems, have been matter interests for the scientists and researchers 

during the last several decades [2]. The delay usually results from the physical separation of the components and 

typically occurs as a delay between the change in the manipulated variable and its effect on the plant or a delay in the 

measurement of the output. This means, we find a time delay between the instant of occurrence of an event in time and 

the measurement of it has been made to the extent needed. Dead-time elements are needed for accurate modelling of 

such systems [3]. Digital computers in control system also introduce the necessity of dead-time elements to model the 

computational delay inherent in the systems. The presence of the delay complicates the design process as it makes 

continuous systems to be infinite dimensional and it significantly increases the dimensions in discrete systems [4]. 

 

In the process-control field where manipulation of physical variables like pressure, flow, liquid-level, temperature etc 

are needed, the systems are sluggish and we find the time delay in signal flow between the sub-systems handling such 

process variable. These factors cause the dead-time effects [5]. Even where a pure dead-time element is not present the 

complexity of the process will often result in a response, which has the appearance of a pure dead-time element due to 

higher order of the system dynamics. Modelling of such complex systems is a very difficult task. However many years 

of experience and decades long research by control scientist across the world have proved that the controllers based on 
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approximate process models are quite versatile. But, efforts are still continuing to design new controllers that would 

simultaneously satisfy robust stability and robust performance, when modelling uncertainty, input disturbances, set-

point changes and the parameter uncertainty are present. 

 

Again, in systems that involve critical missions (such as aircraft, chemical process control systems) time-delay often 

appears either in the state, the control input, or the measurements [6]. Unlike ordinary differential equations or simple 

transfer functions, such systems are infinite dimensional in nature and could be unstable and of non-minimum phase 

nature in the frequency domain [7]. Precisely, there could be uncertainty in time delay also. The issues in stability and 

performance of control systems with uncertainty in delay are, therefore, both of theoretical and practical importance. 

During the past few decades, many researchers have put significant efforts in the analysis and synthesis of uncertain 

systems with time-delay. Various techniques have been proposed dealing with the time delays, finite-dimensional 

sufficient conditions for stability and stabilization, based on the Lyapunov stability etc [8]. Departing from the classical 

linear finite dimensional techniques which apply Smith Predictor type designs, the new methods simultaneously allow 

for delays in the state equations and for uncertainties in both the system parameters and the time delays. During the 

early stages, delay independent results were obtained which guarantee stability and prescribed performance levels of 

the resulting solutions. Recently, delay-dependent results have been derived that considerably reduce the over design 

entailed in the delay independent solution. Different methods have been proposed for the control of time delay systems 

[9-10] but they are either too complex for an industrial implementation or they fail to control unstable systems with 

very long delays. 

 

In this paper a linear matrix inequality (LMI) approach for the control of varying time delay system and an uncertain 

linear time delay system are proposed. The efficacy of the proposed controller is validated using numerical examples. 

In our previous work in time delay system using modified smith predictor controller [11], the controller is sensitive to 

changes in root location, delay etc. But in this proposed method using LMI techniques, the controller is not sensitive to 

time delay. Unlike the methods in [9-10] this proposed method is applicable to systems with very long delays. 

 

The remaining part of the paper is organized as follows: Section II deals with system description and problem 

formulation of both linear and uncertain time delay systems. Section III deals with the design methodology Section IV 

is devoted to present numerical examples. Section V gives the simulation results and the analysis of it. Finally Section 

Vl concludes the paper, followed by the references used. 

 

II.SYSTEM DESCRIPTION AND PROBLEM FORMULATION 

 

Consider a continuous linear varying time delay system described by the state equation  

 
𝑥  𝑡 = 𝐴𝑥 𝑡 +  𝐴𝑖𝑥 𝑡 − 𝜏𝑖 + 𝐵1𝑤 𝑡 + 𝐵2𝑢 𝑡 

𝐿

𝑖=1

 

𝑧 𝑡 = 𝐶𝑥(𝑡) 

(1) 

 

where𝑥(𝑡) ∈ 𝑅𝑛 is the state, 𝑢 𝑡 ∈ 𝑅𝑚  is the control input,𝑤 𝑡 ∈ 𝑅𝑙  is the external disturbance, which belongs to 

𝐿2[0, ∞] and 𝑧 𝑡 ∈ 𝑅𝑝  is the controlled system output. A, Ai, B1, B2, and C are known constant matrices with 

appropriate dimensions, 𝜏𝑖 > 0  is the varying time delay. One important assumption for completing the description of 

dynamic system of (1) is that all of the system states are measurable. The objective of this paper is to develop an LMI 

controller which guarantees the asymptotic stability of the closed loop system (1). Again consider a system in which 

uncertainties are added to the state, input and time delay of system of (1). Then this uncertain linear time delay system 

can be described by the state equation  

 

 
𝑥  𝑡 =  𝐴 + 𝐴 𝑡  𝑥 𝑡 +  𝐵2 + 𝐵2 𝑢 𝑡 +  𝐴𝑑 + 𝐴𝑑 𝑡  𝑥 𝑡 − 𝑑 + 𝐵1𝑤 𝑡  

𝑧 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡) 
(2) 

 

where𝑥 𝑡 , 𝑢 𝑡 , 𝑤 𝑡 , 𝑧 𝑡 , 𝐴, 𝐵1 , 𝐵2and 𝐶 are as given by the Eqn (1). 𝐴𝑑and𝐷 are known real constant  matrices of 

appropriate dimensions and d>0 is the delay time.∆𝐴 𝑡 , ∆𝐴𝑑 𝑡 , ∆𝐵2  are time varying  norm bounded uncertaintiesin 

the system. 
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Fig 1. Control scheme for a linear varying time delay system represented by Eqn (1) 

 

III. DESIGN METHODOLOGY 

 

First we can find the linear matrix inequality for the system (1) with the control input and the external disturbances as 

zeros. Then the state Eqn (1) reduces to a homogeneous system given by 

 

 𝑥 = 𝐴𝑥 𝑡 +  𝐴𝑖𝑥(𝑡 − 𝜏𝑖)

𝐿

𝑖=1

 (3) 

 

A Lyapunov function candidate for the above system is given by 

 

 𝑉 𝑥, 𝑡 = 𝑥 𝑡 𝑇𝑃𝑥 𝑡 +   𝑥 𝑡 − 𝑠 𝑇𝑃𝑖𝑥 𝑡 − 𝑠 𝑑𝑠
𝜏𝑖

0

𝐿

𝑖=1

 (4) 

 

where 𝑃, 𝑃𝑖 ∈ 𝑅𝑛𝑥𝑛  are positive definite symmetric matrices. If 𝑃 > 0, 𝑃1 > 0, ⋯ , 𝑃𝐿 > 0satisfies 𝑉  𝑥, 𝑡 < 0for every 

x satisfying Eqn (3) then the system (3) is stable, i.e., 𝑥 𝑡 → 0as 𝑡 → ∞ Letting   = t-s, Eqn (4) can be rewritten as  

 

 𝑉 𝑥, 𝑡 = 𝑥 𝑡 𝑇𝑃𝑥 𝑡 +   𝑥 𝜎 𝑇𝑃𝑖𝑥 𝜎 𝑑𝑠
𝜏𝑖

0

𝐿

𝑖=1

 (5) 

 

Then the time derivative of 𝑉(𝑥, 𝑡)along the trajectory of the system (3) is given by  

 

 

𝐿 𝑥, 𝑡 = 𝑉  𝑥, 𝑡  

              = 𝑥  𝑡 𝑇𝑃𝑥 𝑡 + 𝑥 𝑡 𝑇𝑃 𝑥  𝑡 + 𝑥𝑇 𝜎 𝑃𝑖𝑥(𝜎)  

   =  𝐴𝑥 𝑡 +  𝐴𝑖𝑥 𝑡 − 𝜏𝑖  
𝑇

𝑃𝑥 𝑡 + 𝑥 𝑡 𝑇𝑃  𝐴𝑥 𝑡 +  𝐴𝑖𝑥(𝑡 − 𝜏𝑖) + 𝑥𝑇 𝜎 𝑃𝑖𝑥(𝜎) 

(6) 
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Expanding, rearranging and considering some important inequalities in Eqn (6), 𝑉  𝑥, 𝑡  can be expressed as V  x, t =

y t TWy t   which satisfies 𝑉  𝑥, 𝑡 < 0 

 

where𝑊 =

 
 
 
 
𝐴𝑇𝑃 + 𝑃𝐴 +  𝑃𝑖

𝐿
𝑖=1 𝑃𝐴1 … 𝑃𝐴𝐿

𝐴1
𝑇𝑃 −𝑃1 … 0
⋮ ⋮ ⋱ ⋮

𝐴𝐿
𝑇𝑃 0 … −𝑃𝐿 

 
 
 

 and     𝑦 𝑡 =  

𝑥(𝑡)
𝑥(𝑡 − 𝜏1)

⋮
𝑥(𝑡 − 𝜏𝐿)

     (7) 

 

then the system(3) is stable. 

 

Remark: Stability of the system (3) using Lyapunov functional of the form (4) can be proved by solving the LMIP 

W<0, P> 0, P1> 0, …….,PL> 0, Next consider the system (1) in which the external disturbance is zero. Now the system 

equation reduces to  

 𝑥 = 𝐴𝑥 𝑡 + 𝐵𝑢 𝑡 +  𝐴𝑖𝑥 𝑡 − 𝜏𝑖 

𝐿

𝑖=1

 (8) 

 

Then we can find a state-feedback 𝑢 𝑡 = 𝐾𝑥 𝑡 such that the system (8) is stable [12]. Now, the linear matrix 

inequality for the system (8) can be obtained from Eqn (7) by replacing A by (A+BK). Then the corresponding LMI 

becomes 

𝑊  =

 
 
 
 
 
 
(𝐴 + 𝐵𝐾)𝑇𝑃 + 𝑃(𝐴 + 𝐵𝐾) +  𝑃𝑖

𝐿

𝑖=1

𝑃𝐴1 ⋯ 𝑃𝐴𝐿

𝐴1
𝑇𝑃 −𝑃1 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐴𝐿
𝑇𝑃 0 ⋯ −𝑃𝐿 

 
 
 
 
 

< 0 

 

for some P, P1 , …., PL> 0, Multiplying every block entry of W on the left and on the right by P
-1

and setting Q=P
-1

, 

Qi=P
-1

PiP
-1

and Y=KP
-1

, we obtain the condition 

 

 𝑋 =

 
 
 
 
 
 
𝐴𝑄 + 𝑄𝐴𝑇 + 𝐵𝑌 + 𝑌𝑇𝐵𝑇 +  𝑄𝑖

𝐿

𝑖=1

𝐴1𝑄 ⋯ 𝐴𝐿𝑄

𝑄𝐴1
𝑇 −𝑄1 ⋯ 0

⋮ ⋮ ⋱ ⋮
𝑄𝐴𝐿

𝑇 0 ⋯ −𝑄𝐿 
 
 
 
 
 

< 0 (9) 

 

Now, consider the system of (1) in which both input and the external disturbances are taken into account. Introduce the 

following performance measure 𝐽 =   𝑧𝑇 𝑡 𝑧 𝑡 − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡  𝑑𝑡
∞

0
 .Assume closed–loop system (1) is quadratically 

stable and with zero initial conditions, the above equation can be written as follows 

 

 𝐽 ≤   𝑧𝑇 𝑡 𝑧 𝑡 − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡 + 𝐿 𝑥, 𝑡  𝑑𝑡
∞

0

 (10) 

 

Substituting Eqn (6) and Eqn (1), Eqn (10) can be rewritten as  

 

)}dtx()P(x+)]-x(tA+P[Ax(t)x+)()]()()()()([)]({[ i

T

ii

T

0

2   



tPxtxAtAxtwtwtcxtcxJ T

ii

TT  

 

From this performance measure inequality we get the linear matrix inequality for the system (1) as 
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 𝐴1𝑋 + 𝐵2𝑌 𝑇 + 𝐴1𝑋 + 𝐵2𝑌 + 𝑄 𝐵1 (𝐶1𝑋)𝑇 𝐴𝑑𝑋

𝐵1
𝑇 −𝛾𝐼 0 0

𝐶1𝑋 0 −𝛾𝐼 0

 𝑋𝐴𝑑
𝑇 0 0 −𝑄  

 
 
 
 

< 0 

 

𝑋 > 0 

(11) 

 

where𝑋 = 𝑋𝑇 , 𝑄 and 𝑌 are the matrices and  is the H∞ performance attenuation bound. Using LMI tool box in 

MATLAB® we can get suited matrix 𝑋 and 𝑌 by the MATLAB code X=dec2mat(lmis,xfeas,x) and 

Y=dec2mat(lmis,xfeas,y)Then a state feedback robust H∞ controller 𝑢 = 𝑌𝑋−1𝑥(𝑡) can be obtained to guarantee the 

stability of the system. Now consider the uncertain linear time delay system given by Eqn (2). The time varying, norm 

bounded uncertainties can be represented in the form (12)  

 

 

∆𝐴 𝑡 = 𝐻𝐹 𝑡 𝐸   
∆𝐴𝑑 𝑡 = 𝐻𝑑𝐹 𝑡 𝐸𝑑  

∆𝐵2 𝑡 = 𝐻1𝐹 𝑡 𝐸1 

(12) 

 

whereH,Hd,H1,E,Ed,and E1 are constant known matrices of appropriate dimensions. 𝐹 𝑡 ∈  𝑅𝑖𝑥𝑗 is unknown real time 

varying matrices with Lebesgue measurable elements satisfying 𝐹𝑇 𝑡 𝐹(𝑡) ≤ 𝐼. Now an additive controller uncertainty 

∆𝐾(𝑡) is introduced to the system (2) so that 𝑢(𝑡) can be represented in the form 

 

 𝑢 𝑡 =  𝐾 + 𝐾 𝑡  𝑥 𝑡  (13) 

where 𝐾 𝑡 = 𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘    (14) 

 

satisfying 𝐹𝑘
𝑇(𝑡)𝐹𝑘(𝑡) ≤ 𝐼, where 𝐾 ∈ 𝑅𝑚𝑥𝑛 ,𝐹𝑘(𝑡) ∈ 𝑅𝑖𝑥𝑗  is unknown real time varying matrices with Lebesgue 

measurable elements 𝐹𝑘 , 𝐻𝑘 , and 𝐸𝑘  are constant matrices of appropriate dimensions [13]. Substituting the Eqn (12), 

(13), and (14) in Eqn (2), the state equation becomes 

 

𝑥 (𝑡) =  𝐴 + 𝐻𝐹 𝑡 𝐸 𝑥 𝑡 +  𝐵2 + 𝐻1𝐹 𝑡 𝐸1  𝐾 + 𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘  𝑥 𝑡 +  𝐴𝑑 + 𝐻𝑑𝐹 𝑡 𝐸𝑑  𝑥 𝑡 − 𝑑 + 𝐵1𝑤(𝑡) 

𝑧 𝑡 = 𝐶𝑥 𝑡 + 𝐷 𝐾 + 𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘  𝑥(𝑡) 

 

Rearranging and simplifying we will get the state equation as 

 

𝑥  𝑡 =  𝐴𝑘
    + 𝐻𝐹 𝑡 𝐸 + 𝐵2𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘 + 𝐻1𝐹 𝑡 𝐸1𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘  𝑥 𝑡 +  𝐴𝑑 + 𝐻𝑑𝐹 𝑡 𝐸𝑑  𝑥 𝑡 − 𝑑 + 𝐵1𝑤(𝑡) 

 𝑧 𝑡 = 𝐶𝑘
   𝑥 𝑡  (15) 

where 𝐴𝑘
    = 𝐴𝑘 + 𝐻1𝐹 𝑡 𝐸1𝐾, 𝐶𝑘

   = 𝐶𝑘 + 𝐷𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘 , 𝐴𝑘 = 𝐴 + 𝐵2𝐾, 𝐶𝑘 = 𝐶 + 𝐷𝐾. A Lyapunov 
functioncandidate for the above system is given by 

 𝑉 𝑥, 𝑡 = 𝑥𝑇𝑃𝑥 +  𝑥𝑇
𝑡

𝑡−𝑑

 𝜎 𝑅𝑥 𝜎  (16) 

 

where 𝑃, 𝑅 ∈ 𝑅𝑛𝑥𝑛 are positive definite matrices. Then the time derivative of  𝑉 𝑥, 𝑡  along the trajectory of the system 

Eqn (15) is given by 

 

 

𝐿 𝑥, 𝑡 = 𝑉  𝑥, 𝑡  
              = 𝑥𝑇 𝑡  𝑃𝐴𝑘

    + 𝐴 
𝑘
𝑇𝑃 + 𝐼 + 𝐸𝑑

𝑇𝐸𝑑 𝑥 𝑡  
                    +2𝑥𝑇 𝑡 𝑃 𝐻𝐹 𝑡 𝐸 + 𝐵2𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘 + 𝐻1𝐹 𝑡 𝐸1𝐻𝑘𝐹𝑘 𝑡 𝐸𝑘  𝑥 𝑡  
                    +2𝑥𝑇 𝑡 𝑃 𝐴𝑑 + 𝐻𝑑𝐹 𝑡 𝐸𝑑  𝑥 𝑡 − 𝑑 + 2𝑥𝑇 𝑡 𝑃𝐵1𝑤 𝑡 − 𝑥𝑇 𝑡 − 𝑑 𝑅𝑥(𝑡 − 𝑑)  

(17) 
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Introduce the performance measure 𝐽 =   𝑧𝑇 𝑡 𝑧 𝑡 − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡  𝑑𝑡
∞

0
. Assume that the closed–loop system given 

by the Eqn (15) is quadratically stable and with zero initial conditions, the above equation can be written as follows 

𝐽 ≤   𝑧𝑇 𝑡 𝑧 𝑡 − 𝛾2𝑤𝑇 𝑡 𝑤 𝑡 + 𝐿 𝑥, 𝑡  𝑑𝑡
∞

0

 

 

Substituting 𝑧(𝑡) and 𝐿(𝑥, 𝑡) in the above equation and considering some inequalities, the above 𝐽 can be written as 

 

 𝐽 ≤  𝑥𝑇 𝑡   𝑃𝐴𝑘 + 𝐴𝑘
𝑇𝑃 + 𝜀1𝐾

𝑇𝐸1
𝑇𝐸1𝐾 + 𝑃𝑀𝑃 + 𝑁 + 𝐶 

𝑘
𝑇𝐶 

𝑘 + 𝛾−2𝑃𝐵1𝐵1
𝑇𝑃 𝑥 𝑡 𝑑𝑡

∞

0

 (18) 

where 𝑀 = 𝐻𝐻𝑇 + 𝐻𝑑𝐻𝑑
𝑇 +  1 +

1

𝜀1
 𝐻1𝐻1

𝑇 + 𝐴𝑑𝐴𝑑
𝑇 + 𝐵2𝐻𝑘𝐻𝑘

𝑇𝐵2
𝑇 , 𝑁 = 𝐸𝑇𝐸 + 𝐸𝑑

𝑇𝐸𝑑 +  1 +∝1 𝐸𝑘
𝑇𝐸𝑘  + 𝐼and 

𝜖1 > 0  is any scalar. It can be shown that for any scalar 𝜖2 > 0, 
 

 𝐶 
𝑘
𝑇𝐶 

𝑘 ≤  1 +
1

𝜀2

 𝐶𝑘
𝑇𝐶𝑘 +  1 + 𝜀2 𝛼2𝐸𝑘

𝑇𝐸𝑘  (19) 

 

where 𝛼2 =  𝐻𝑘
𝑇𝐷𝑇𝐷𝐻𝑘 . Substituting inequality (17) in (16) we have 

 

𝐽 ≤  𝑥𝑇 𝑡  𝑃𝐴𝑘 + 𝐴𝑘
𝑇𝑃 + 𝑃 𝑀 + 𝛾−2𝐵1𝐵1

𝑇 𝑃 + 𝜀1𝐾
𝑇𝐸1

𝑇𝐸1𝐾 +  1 +
1

𝜀2

 𝐶𝑘
𝑇𝐶𝑘 +  1 + 𝜀2 𝛼2𝐸𝑘

𝑇𝐸𝑘 + 𝑁 𝑥 𝑡 𝑑𝑡
∞

0

 

 

The robust stability of the closed loop system (15) is guaranteed only if there exist a positive-definite symmetric matrix 

P and a gain matrix K [14] such that 

 

 𝑃𝐴𝑘 + 𝐴𝑘
𝑇𝑃 + 𝑃 𝑀 + 𝛾−2𝐵1𝐵1

𝑇 𝑃 + 𝜀1𝐾
𝑇𝐸1

𝑇𝐸1𝐾 +  1 +
1

𝜀2

 𝐶𝑘
𝑇𝐶𝑘 +  1 + 𝜀2 𝛼2𝐸𝑘

𝑇𝐸𝑘 + 𝑁 < 0 
(20) 

 

Multiplying the inequality (20) on the left and right by P
-1

, defining Q= P
-1

, Y=KQ we have  

 

𝐴𝑄 + 𝑄𝐴𝑇 + 𝐵2𝑌 + 𝑌𝑇𝐵2
𝑇 + 𝑀 + 𝛾−2𝐵1𝐵1

𝑇 + 𝑄𝑁𝑄 +  1 + 𝜀2 𝛼2𝑄𝐸𝑘
𝑇𝐸𝑘𝑄 + 𝜀1𝑌

𝑇𝐸1
𝑇𝐸1𝑌

+  1 +
1

𝜀2

  𝐶𝑄 + 𝐷𝑌 𝑇(𝐶𝑄 + 𝐷𝑌) < 0  

By using Schur compliment the above inequality is transformed into the following LMI  

 

 

 
 
 
 
 
 
 
 
 
𝐺1 𝑄𝐺2

𝑇 𝑄𝐸𝑘
𝑇 𝑌𝑇𝐸1

𝑇 𝐺3
𝑇

𝐺2𝑄 −𝐼 0 0 0

𝐸𝑘𝑄 0 −
𝛼2

−1

1 + 𝜀2

𝐼 0 0

𝐸1𝑌 0 0 −
1

𝜀1

𝐼 0

𝐺3 0 0 0 −
𝜀2

1 + 𝜀2

𝐼
 
 
 
 
 
 
 
 
 

< 0  (21) 

 

where𝐺1 = 𝐴𝑄 + 𝑄𝐴𝑇 + 𝐵2𝑌 + 𝑌𝑇𝐵2
𝑇 + 𝑀 + 𝛾−2𝐵1𝐵1

𝑇 , 𝐺2
𝑇 = [𝐸𝑇𝐸𝑑

𝑇 1 + 𝛼2 
1

2𝐸𝑘
𝑇𝐼, 𝐺3

𝑇 = 𝑄𝐶𝑇 + 𝑌𝑇𝐷𝑇  If the LMI 
(21) is feasible, then the controller gain matrix is given by 𝐾 = 𝑌𝑄−1 The above methods are illustrated using 
numerical examples given below. 

A. Numerical examples 

Example1: Consider a linear time delay system having state equation  

𝑥 = 𝐴1𝑥 + 𝐴𝑑𝑥 𝑡 − 𝜏 + 𝐵1𝑤 + 𝐵2𝑢 
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𝑧 = 𝐶1𝑥 

where, 𝐴1 =  

0 0 0 1
0 0 −0.0175 −0.01
0 0.0175 0 0
0 0 0 0

 ,  𝐵1 =  

0 0
0.04 0

0 −0.163
0 1.814

 , 𝐵2 =  

0 0
0.381 0

0 −0.319
0 3.542

   

 

𝐶1 =  
0.01 1 0 0

0 0 0 1
 and𝐴𝑑 =  

0.3 0 0 0
0.1 0.2 0 0
0.1 0 0.2 0
0.1 0 0 0.2

  

 

If there exists matrix X=X
T
 and matrix Q, Y, satisfied the following linear matrix inequality 

 

 

 
 
 
 
 
 𝐴1𝑋 + 𝐵2𝑌 𝑇 + 𝐴1𝑋 + 𝐵2𝑌 + 𝑄 𝐵1  𝐶1𝑋 𝑇 𝐴𝑑𝑋

𝐵1
𝑇 −𝛾𝐼 0 0

𝐶1𝑋 0 −𝛾𝐼 0

  𝑋𝐴𝑑
𝑇 0 0 −𝑄  

 
 
 
 

< 0  

 𝑋 > 0  

Then a state feedback robust H∞ controller 𝑢 = 𝑌𝑋−1𝑥(𝑡) can be obtained to guarantee the stability of the system. 

 

Example 2: Consider an uncertain linear time–delay system of the form (2), (12), (13), and (14) with corresponding 

matrices as following: 

 

𝐴 =  
0 1
1 −2

 , 𝐴𝑑 =  
0 0

0.3 0.3
 , 𝐵2 =  

2
2
 , 𝐻 =  

1
0
 , 𝐸 =  0.3 0.3 , 𝐵1 =  

0.2
0

 , 𝐸1 = 0.3 

𝐶 =  1 1 , 𝐷 = 0.5, 𝐸𝑑 = [0.2 0.2], 𝐻𝑘 = 1, 𝐻1 = 𝐻𝑑 =  
1
0
 , 𝐸𝑘 =  

0.1 0
0 0.1

  

 

Ifthere exists a matrix Q, Y, satisfied the linear matrix inequality (21).Then a state feedback robust H∞ controller 

𝑢 = 𝑌𝑄−1𝑥(𝑡)  can be obtained to guarantee the stability of the system.  

 

IV. SIMULATION RESULTS AND DISCUSSION 

 

The controller was synthesized as mentioned above with the help of LMI solvers [15] .Fig 2 shows the open loop 

response of the  system(1) with time delay 0.1 sec whereas Fig 3 shows the closed loop response of the same system 

with same time delay. From these figures it can be seen that the given system is unstable without the controller and is 

stable with the proposed LMI controller. From fig 3 it can be seen that when the time delay is 0.1 sec, the settling time 

is 47 sec and the steady state errors are -0.0317 & 0.00194 respectively.Then increased the time delay to different 

values from 1 sec to 190 sec and found out the corresponding maximum settling time and steady state errors. As in the 

previous case here also it can be seen that the system is unstable without the controller and is stable with the controller. 

Table 1 gives the Performance specification of the   system represented by Eqn(1)   with different values of time delay. 

http://www.ijareeie.com/


 
 ISSN (Print)  : 2320 – 3765 
ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 9, September 2013 
 

Copyright to IJAREEIE                              www.ijareeie.com            4435 

 

 

Fig  2Open loop response of the system with delay 0.1 sec 

 

Fig  3Closed loop response of the system with delay 0.1 sec 

 

 

 

http://www.ijareeie.com/


 
 ISSN (Print)  : 2320 – 3765 
ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 2, Issue 9, September 2013 
 

Copyright to IJAREEIE                              www.ijareeie.com            4436 

 

TABLE I 

Performance specifications of the given system with different values of time delay 

Time Delay (sec) Settling Time (sec) Steady State Error 

(1) (2) (3) 

0 46.8 -0.0317&.00194 

0.1 47 -0.0317&.00194 

1 49.5 -0.0317&.00194 

10 78 -0.0317&.00194 

20 114 -0.0317&.00194 

100 428 -0.0317&.00194 

140 588 -0.0317&.00194 

150 628 -0.0317&.00194 

160 204 -0.0281&.00125 

170 36.8 -0.0211&0 

180 35.1 -0.0211&0 

190 34.9 -0.0211&0 

 

In Table 1, column (1) shows the time delay. It has been assumed that the time delay would change from 0 to 190 sec 

.Column (2) shows the corresponding values of the settling time and column (3) shows the corresponding steady state 

error. It can be seen that as the time delay is increased from 1 sec to 10 sec, the settling time is changed from 49.5 sec 

to 78 sec but the corresponding steady state errors remains the same. Again it can be seen that when the time delay is 

increased to 20 sec and 100 sec, then the corresponding settling time are 114 sec and 428 sec respectively. we can see 

that, when the time delay is increased to 160 sec , the settling time is reduced to 204 sec and the steady state error 

reduces -0.0281& 0.00125 respectively. From the Table 1 it can be seen that as the time delay increases the settling 

time also increases and after a particular delay it decreases. Again we can see that at higher values of delay, the steady 

state error becomes zero or approaches to zero. The non-zero error remains constant at large values of delays. 

 

Fig 4 and Fig 5 shows the closed loop response of the given uncertain system (2) for different values of delay with 

disturbance attenuation bound () 1 and 0.5 respectively. It can be seen that as the value of   increases the steady state 

error decreases but the settling time increases. 

 

Fig 4 show the closed loop responses of the given uncertain system having  the disturbance attenuation bound 1 with 

different delays  say 0.1 sec,0.5 sec,1 sec,10 sec,20 sec& 100 sec respectively. From Fig 4 it can be seen that the steady 

state error is high for a delay of 0.1 sec whereas it is small for a delay of 100 sec. 
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Fig  4 Closed loop responses of the uncertain system with disturbance attenuation bound  =1 

 

Fig  5 Closed loop responses of the uncertain system with disturbance attenuation bound  =0.5 

Fig 5 show the closed loop responses of the given uncertain system having the disturbance attenuation bound 0.5 with 

different delays  say 0.1 sec,0.5 sec,1 sec,10 sec,20 sec& 100 sec respectively. Here also it can be seen that the steady 

state error is high for a delay of 0.1 sec whereas it is small for a delay of 100 sec. Again it can be infer that as the value 

of   increases the overshoot of the output response also increases. 

 

CONCLUSION 

In this paper the LMI control of a linear varying time delay system was discussed. Again a robust 𝐻∞  controller is 

developed for linear time delay systems subject to uncertainties in both plant and controller. The robust controller is 
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obtained using an LMI algorithm. The LMI solvers in MATLAB® were made use of for solving the inequalities 

[16].The analysis of the system with varying time delay was also performed. In the case of linear varying time delay 

system   it can be seen that as the time delay increases the settling time also increases. But after a particular delay, 

settling time decreases. Again we can see that at higher values of delay, the steady state error becomes zero or 

approaches to zero. The non-zero error remains constant at large values of delays. In the case of uncertain time delay 

system it can be seen that the steady state error is high for small delay whereas it is small for large delays. Again it can 

be infer that as the value of disturbance attenuation bound increases the overshoot of the output response also increases. 

The proposed LMI controller would give good performance to systems with uncertainty in time delay. 
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